
7

A Hybrid Grammatical Tagger:


ROGER GARSIDE and NICHOLAS SMITH

In this chapter we discuss in detail how a piece of software can carry out
automatically one important task in corpus annotation. The task is part-
of-speech (POS) tagging (also called word-class tagging, or gram-
matical tagging); that is, assigning to each word in a text its correct part
of speech in context. The result of this task, as a form of corpus annota-
tion, was discussed in some detail in Chapter 2. It usually forms a basis for
more sophisticated annotation, such as full syntactic parsing or semantic
annotation, and it carries out the useful supplementary tasks of splitting
up the text into individual words and sentences.

Most current part-of-speech taggers are probabilistic or stochastic
(see, for example, Marshall 1983, Garside et al. 1987, Church 1988,
DeRose 1991, Cutting et al. 1992, Merialdo 1994); that is, they choose a
preferred tag for a word by calculating the most likely tag in the context
of the word and its immediate neighbours. At the same time, non-proba-
bilistic or rule-based taggers (which began with Greene and Rubin 1971)
have been making something of a come-back, with the tagging systems
discussed by Brill (1992) and Voutilainen (1995: 165–284). In practice it
may be that a hybrid system, which combines both probabilistic and
rule-based approaches, captures the best of both techniques.

Most serviceable taggers today attain an accuracy in the region of
95–98 per cent. However, what is meant by such a figure is open to vari-
ant interpretations. It is probably better to avoid drawing conclusions
about the quality of tagging software from comparing crude accuracy
rates until we know more about the quality of the linguistic distinctions
which the tagger makes, and how consistent analysts have been in check-
ing the accuracy of a tagger (see Chapter 17).1

One of the earliest probabilistic taggers was CLAWS (Constituent Likeli-
hood Automatic Word-tagging System), developed by  at the Uni-
versity of Lancaster (Marshall 1983, Garside et al. 1987). This chapter
discusses the current incarnation of this piece of software, ; this

Probabalistic and Rule-based Taggers—–103

could now be considered to be a hybrid tagger, involving both probabilis-
tic and rule-based elements. It has been designed so that it can be easily
adapted to different types of text in different input formats.

7.1—Probabilistic and Rule-based Taggers

In natural language processing by computer up to the late 1970s, part-of-
speech tagging was seen as a by-product (and not a very interesting one
at that) of full syntactic parsing. However the TAGGIT program (Greene
and Rubin 1971) introduced the idea of providing a text corpus annotated
with part-of-speech information as a useful tool for linguistic research.
This was the Brown Corpus of one million words of written American
English, collected in the early 1960s. The tags assigned were from a set of
some 77 tags (the Brown tagset). The basic idea in the  program
was to associate with each word a set of potential tags, and then use the
context to choose the correct one. The mechanism for the initial assign-
ment of tags to a word relied on a lexicon, a word-ending list, and a set of
other rules for dealing with capitalized words, hyphenated words, etc.; as
we will see, this general type of mechanism is used in  (and indeed
in other probabilistic taggers). The contextual disambiguation was carried
out in  by means of context-frame rules. A context-frame rule was
a rule, designed by a linguist based on observation of data, which specified
some information about a potential tag in the context of up to three tags
on either side – the rule could specify that the potential tag was the correct
one in context, or that the potential tag was impossible in this context (so
that one of the other potential tags must be the correct one). All the tags
being used for contextual clues in a context frame rule had to be unam-
biguous, so the context frame rules had to be tried several times, in the
hope that disambiguating a tag at some point in a sentence would allow
a context frame rule now to be applied to disambiguate another tag in the
sentence.

After this pioneering tagger using the rule-based paradigm, interest
passed in the early 1980s to probabilistic taggers. The general idea is that,
if we have a sequence of words, each with one or more potential tags, then
we can choose the most likely sequence of tags by calculating the probabil-
ity of all possible sequences of tags, and then choosing the sequence with
the highest probability. Thus, if we have a sequence of words w1, w2, … ,
wn, the goal of tagging is to select the most likely sequence of tags t1, t2, … ,
tn associated with those words, and we assume that this is the correct se-
quence. The statistical model which has been most used in POS tagging
is that of the hidden Markov model () (see Poritz 1988). We can

104—–A Hybrid Grammatical Tagger: 

(raw corpus)

Assigning candidate tags
(a) Lexicon Look-up

(b) Suffix-list Look-up

Eliminating all but one candidate tag (where possible)
by Context Frame rules

(Manual disambiguation)

(tagged corpus)

Figure 7.1—Diagram of the  system processing the Brown Corpus

directly observe the sequence of words, but we can only estimate the se-
quence of tags, which is ‘hidden’ from the observer of the text; hence the
term ‘hidden Markov model’ is appropriate. A  enables us to estimate
the most likely sequence of tags, making use of observed frequencies of
words and tags (in a training corpus).

The probability of a tag sequence is generally a function of:

■ the probability that one tag follows another; for example, after a deter-
miner tag an adjective tag or a noun tag is quite likely, but a verb base
form tag is less likely. So in a sentence beginning the run…, the word run

is more likely to be a noun than a verb base form.
■ The probability of a word being assigned a particular tag from the list

of all possible tags for the word; for example, the word over could be a
common noun in certain restricted contexts (of cricket reports), but
generally a preposition tag would be overwhelmingly the more likely
one.

On page 105 we have the sequence of words w1, w2, … , wn and a pos-
sible sequence of tags t1, t2, … , tn. The probability of this sequence of tags
makes use of estimates of the tag transition probabilities shown as p1,2, p2,3,
etc. in the diagram below. In the simplest case these estimates are derived
from frequencies of tag pairs (‘bigrams’ in the training corpus). The sec-
ond type of probability that enters into an  is that labelled q1, q2, etc.

Probabalistic and Rule-based Taggers—–105

t2

w2

q2

t3

w3

q3

t4

w4

q4

tn–1

wn–1

qn–1

tn

wn

qn

t1

w1

q1

p1,2 p2,3 p3,4 pn–1,n

in the diagram. This is the probability that the word wi will be associated
with the tag ti. Obviously, with a sufficiently large training corpus, it will
be possible to estimate the qi from the relative frequency with which any
particular word and tag associate with each other.

This model is a first-order , since the estimates used for the tag tran-
sition probabilities are derived from bigrams; that is, we have estimated
the likelihood of a particular tag occurring given only the preceding tag.
A second-order  would use tag transition estimates derived from
trigrams; that is, we estimate the likelihood of a particular tag occurring
given the preceding two tags. This is clearly a more refined estimate of
the probability of one tag following another, but we have to calculate a
much larger set of estimates and need a correspondingly larger training
corpus.

It is clear that the  model descibed above is no more than a rather
rough approximation to the problem we are trying to solve when we tag
a corpus. For one thing, it treats the tag sequence as an abstraction from
what the words are; it ignores, for example, the problem of how to deal
with idiosyncratic word sequences or multiwords like as well as. Secondly,
and more notably, it ignores any grammatical constraints on the word-
class of a word, apart from constraints derived from its immediate neigh-
bours. Nevertheless, in spite of its manifest theoretical limitations, the
 approach to tagging is surprisingly successful, and various taggers of
this general design result in a 95–97 per cent accuracy rate. The Xerox
tagger, which is of this general design, is discussed further in Section 10.2.

After Greene and Rubin’s  tagger, the next rule-based tagger
to attract serious interest was that of Brill (1992, 1994), and this illustrates
how the rule-based approach contrasts with the probabilistic approach.
Like a probabilistic tagger, Brill’s tagger requires a training corpus and,
using this, the tagger works by ‘automatically recognizing and remedying
its weaknesses, thereby incrementally improving its performance’ (Brill
1992). The first step is to apply the most likely tag for each word (i.e. ‘most
likely’ without reference to any left or right context, what is called the
‘unigram’ probability) – for this step, and this step alone, quantitative
information is needed. The training corpus, tagged in this way, has a
relatively high accuracy (in the region of 90 per cent), and the task then

106—–A Hybrid Grammatical Tagger: 

is to improve this result by iteratively applying a set of patching rules of
the following form (excerpted from Brill 1992):

change tag a to tag b when:
1. The preceding (following) word is tagged z.
2. The word two before (after) is tagged z.
3. One of the two preceding (following) words is tagged z.
4. One of the three preceding (following) words is tagged z.

These rules, as can be seen, make use of information available in the
immediate context of the ‘target word’, although longer-range rules are
also possible. The tagger looks at the application of each rule of this type
to the training corpus, and computes the number of errors remedied by
its application and the number of new errors introduced. For example, the
most successful of Brill’s (1992) patches was one which changed the tag
‘infinitive marker’ to ‘preposition’ when an article followed (e.g. in to the,
the word to could scarcely be an infinitive marker). The procedure of
learning the patches is iterative, and after each run the most successful
patch is added to the list of patches. The ‘patching rules’ are ordered in
terms of the net improvement they achieve (i.e. the size of the difference
between tags corrected and tags wrongly corrected). If one wishes to
tag a new corpus, the patches (after the basic tagging has been done) are
applied in order of success-rate; but if a patch changes tag a to tag b, it
applies only if there is some instance in the training corpus of the word in
question having the tag b.

Brill’s rule-based tagger has produced results comparable to  tag-
gers, and therefore has challenged the orthodoxy (which had been grow-
ing up in the early 1990s) that statistical methods outperform rule-based
methods. At the same time, statistical taggers do not seem to be making
significant progress towards the goal of 100 per cent success, and this may
be because they are lacking in the kinds of grammatical knowledge about
language which linguists take for granted. There may be a plateau which
probabilistic taggers have reached, and there may be limits to how far one
can go without a richer kind of linguistic knowledge.

This may be borne out by the fact that the one notable improvement
on the 3–5 per cent error rate claimed up to now has been a grammar-
based system, ENGCG (the English Constraint Grammar of the Helsinki
team of Karlsson and Voutilainen – see Section 3.3.5). Certainly the
grammar- or rule-based approach can be taken much further than was
previously thought.

In fact many systems are not quite so ‘pure’ as the above discussion
implies, and already there is some combining of strategies. Nearly all
probabilistic taggers have sets of heuristic rules or guessers dealing with

The  Tagger—–107

unknown words, while some rule-based systems use a limited amount of
frequency information, as we have seen with Brill’s (1992, 1994) system.
A systematic attempt to integrate the two approaches is described in
Tapanainen and Voutilainen (1994). Their experiment involved tagging
a text with both a rule-based tagger ( – see Section 3.3.5) and a
probabilistic tagger (the Xerox tagger – see Section 10.2) and aligning the
outputs from the two programs. Where  succeeds in fully disam-
biguating a word its analysis is preferred to that of the Xerox tagger;
where ambiguity remains in the former, it is resolved by accepting the
disambiguation of the latter.

7.2—The CLAWS Tagger

The  tagger, discussed in detail in the remainder of this chapter,
could be considered to be a hybrid tagger, involving both probabilistic
and rule-based elements, even in its earliest form ( – Marshall
1983, Garside et al. 1987). The probabilistic element was an approxima-
tion to a  tagger. In one respect it was less that a  tagger; instead
of using probabilities of word-tag association (the probabilities in the dia-
gram on p. 105), it relied on human judgement of frequency applied to
tags for ambiguous words in the lexicon. A three-point scale was used –
common, rare (less than 10 per cent of the word occurrences were ex-
pected to receive this tag), very rare (less than 1 per cent of the word oc-
currences were expected to receive this tag). The reason for adopting this
expedient was that the training corpus was judged not to be large enough
to provide reliable word-tag association statistics.

In another respect,  was already more than a  tagger: it
contained an embryonic rule-based component, the so-called ‘idiomlist’
(see Blackwell 1987) which enabled it to carry out exceptional taggings; for
example, to tag multiwords (see Section 2.2) such as as for or in order that

as single tokens, or to identify common tag sequence constraints which
departed from what could be expected using the  mechanism (for
example dining room tagged as NOUN–NOUN rather than ADJECTIVE–NOUN).

The ‘idiomlist’ component has been enormously expanded in later
versions of , so that the term idiomlist (never very satisfactory, as
it suggests that it searches only for patterns which are linguistic idioms)
should be replaced by the term rule-based component. This com-
ponent in current versions of  not only identifies exceptional se-
quences (for example multiwords, foreign expressions and complex names
of various kinds), it also carries out a significant role in disambiguation,
sometimes preempting, sometimes correcting the probabilistic processing

108—–A Hybrid Grammatical Tagger: 

of major categories such as infinitivals and past participles, which are
liable to cause trouble for a tagger relying on probabilistic resources
alone.

The first version of the  tagging system (which was subsequently
named ) was developed at Lancaster over the period 1980–83. It
was developed as part of a project to assign part-of-speech information to
the  (Lancaster-Oslo/Bergen) Corpus, a one-million word corpus of
British English designed to match the Brown Corpus in size, scope and
structure. The tagset used, which became known as the  tagset,
was a development of the Brown tagset, using about 135 tags.

The second version of  () was developed over the period
1983–86. One special feature of the  Corpus was that certain features
such as sentence breaks were explicitly marked in the text.  was
developed as a tagger which could be run over general text, without ex-
plicit mark-up of this kind. The tagset used, the  tagset (with 132
tags), was a revision and refinement of the  tagset, based on expe-
rience with using this original tagset.

The development of  began in 1988,2 and a number of versions
of this software have been produced; the latest version (late 1996) being
version 17. One development has been the separation of the  soft-
ware from the tagset used. As mentioned above, earlier versions of 
were closely designed round a specific tagset. However  was devel-
oped to tag the one hundred million word British National Corpus (),
and for this two tagsets were to be used:

■ a detailed tagset (C7) of 146 tags for a two million word sampler cor-
pus, and

■ a less refined tagset (C5) of 61 tags for the rest of the corpus.

The opportunity was taken to decouple the program code from the tagset,
which is now read in as part of the resources required for a particular
tagging task.

7.3—Input Issues

The first version of  was designed specifically for the  Corpus,
with its special notation for representing sentence breaks, changes of
typeface, special characters, etc. (see Johansson et al. 1978).  was
designed to cope with text which used normal orthographic conventions,
but it soon became clear that  would have to be able to cope with
representation of special characters such as accented letters, and of the
structure of a text – for instance, it is fairly common for certain parts of

Input Issues—–109

a document not to be text for tagging, and these have to be marked so
that they can be ignored.

When  came to be redesigned so that it could be used for the
British National Corpus project, it was decided to move over to using
 (Standard Generalized Mark-up Language: see Section 2.4) to rep-
resent all features of a text. This is the normal default assumption in cur-
rent use of the  system, although it is possible also to process files
in plain . In a number of recent  projects, a pre-processing
program running before  translates a text from a different format
into the standard set of  tags and entities used by . For exam-
ple in one project there are a number of special purpose programs to take
files of text from a variety of sources (including the World Wide Web) and
with a number of different formats to represent emphasis, quotation
marks, special characters, etc., and to convert them into the standard for-
mat required by .

One of the resources read by  at the beginning of a run is a list
of all valid  tags and entities together with the action to be taken on
recognizing them. It is of course possible to supplement the standard set
of tags and/or entities for processing a particular text. If  encoun-
ters a tag or entity not in these tables, it displays an error message. The
default action for a valid  tag is for  simply to ignore it, copy-
ing it from the input to the output with an associated null part-of-speech
mark. This would be the normal case, for example, for tags marking text
structural divisions (chapters, paragraphs, etc.) or denoting typeshifts
(bold, italic, etc.). Alternative actions which can be specified are:

■ to ignore all text bracketed by a particular pair of tags – this was not
used in the  data, but might apply, for example, to editorial notes
inserted in a text.

■ to treat a particular tag as the start of the taggable text. In the  writ-
ten text was always enclosed within <text> … </text> markers, and spoken
text was enclosed within <stext> … </stext> markers. If  reads an
-conformant text it always reads up to the first such start tag be-
fore processing any text, stopping when it meets the corresponding end
tag, and starting to process text again if it meets a further start tag.

One problem with skipping everything up to the first start tag, is what to
do with the characters passed over, since we presumably wish to end up
with a single text file containing all the original information plus the addi-
tional part-of-speech information. Since the first version of  its out-
put format has been rather restricted; what is referred to as ‘vertical out-
put’ (see Section 7.6), with a single orthographic unit on each line, and a
fixed format of text line reference, word (up to 25 characters), subsidiary

110—–A Hybrid Grammatical Tagger: 

information (enclitic markers, error markers,  decision codes, etc.),
and the part-of-speech tags. A number of programs have been written at
 (including several editors) which expect text in this format, so it
was difficult to change it to a more flexible format. Any data that do not
fit within this rigid format, including the  header information
which precedes the text proper in an  document (often several thou-
sand characters long in the ) are therefore copied to a supplementary
free-format output file, and a marker is placed in the normal  out-
put file indicating their offset and length in the supplementary file. Thus
the two files could be merged back together without loss of information,
after the post-editing and other post-processing had taken place.

This supplementary file also solved a problem never satisfactorily re-
solved in earlier versions of ; what to do about long words. In ear-
lier versions of  a long word (that is, one longer than 25 characters)
was simply truncated, with an error message. Now it is simply inserted in
the supplementary file and a suitable pointer inserted in the normal
 output file.

The table of  entities (marked by an opening ‘&’ and a closing ‘;’)
indicates for each valid entity what class of character it represents, and
 takes an appropriate action for each class. Some of the more com-
monly encountered classes are:

■ accented letters such as É (representing an upper case letter) or
ĉ (representing a lower case ĉ). Since words containing accented
letters may be naturalized into English with or without accents, a word
containing entities of this class is looked up in the lexicon with and then
without the accents. The  entity table entry for this class specifies
what unaccented character or characters correspond to this accented
letter – thus É corresponds to ‘E’, and œ corresponds to ‘oe’.

■ certain classes of character can be specified as of a type of character to
be ignored. Thus, the word Unix© is treated as if it were ‘Unix’,
since the character © (a copyright sign ‘©’) is treated as a character
to be ignored.

■ a further class of  entities, including such entities as ⅓ for the
fraction one third, is specified as to be treated as part of a numerical
value.

An example of an  input text to , illustrating some of the
features mentioned above is

—<text>
—The naïve cat sat on the <hi rend="italic">Persian</hi> mat.
—</text>

Tagging Individual Words—–111

which represents the sentence ‘The naïve cat sat on the Persian mat.’

7.4—Tagging Individual Words

In this section we discuss how a set of one or more potential part-of-
speech tags is associated with each individual orthographic unit – a word
or other sequence of graphic characters considered as a unit.

The assignment of tags is treated as a sequence of tests of the current
orthographic unit. If a test succeeds then an appropriate set of tags is as-
signed; if not, the next test is applied. The sequence of tests is as follows:

1. First a number of tests are carried out for orthographic units of certain
special types:
(a) for long words (i.e. words over 25 characters long), which are treat-

ed by default as common nouns
(b) for truncated words, which are given the unknown tag (FU in C7 or

UNC in C5). In the spoken part of the British National Corpus
truncated words (e.g. never truncated to nev at a point where an ut-
terance is interrupted) are bracketed by the  tags <trunc> …

</trunc>. In tagging other spoken corpora, such as the COLT cor-
pus of London teenage discourse3 where truncated words are
marked by a trailing =-symbol, a pre-processing program is used
to map the notation into the  format

(c) and for clitics, such as the ’ll of he’ll (see Section 2.2)
2. Next the full word is first looked up in the main  lexicon. The

look-up procedure is simplified by converting the word to be looked
up into a standard form (all lower case, no abbreviatory full stops). If
an entry is found in the lexicon for this word, then it contains a list of
potential tags for the word, but the tags are annotated with the type
of orthography to be expected if the word is to be allocated this tag. A
filter process uses the orthography of the word in the text to retain
only the appropriate subset of the tags. Thus a lower-case word would
retain only those tags marked as appropriate for lower case, while a
word with an initial capital would retain the tags marked as expecting
an initial capital (types of proper noun, for instance). But those tags
marked as appropriate for lower case are also retained, since it is com-
mon to find words of this type capitalized at the beginning of sentences
or in headlines. It would have been possible to apply this filtering pro-
cess more selectively, since, for example, in the , headlines are
marked with a special  tag. However, the capitalization process

112—–A Hybrid Grammatical Tagger: 

is more widespread than this; furthermore the  headline tag has not
always been found to be present where expected

3. Tests are carried out for dropped initial h and final g, succeeding only
if the resulting word is found in the lexicon (for example ’ouse and
anythin’). This tends not to be very useful for the transcription of the
spoken part of the , but it is quite useful in representation of spo-
ken dialogue in written texts.

4. Tests are then carried out for words with a trailing s; this is stripped
off, and spelling rules are used to obtain a suitable base form, which is
then checked against the lexicon. A filtering process retains only those
tags consistent with a trailing s (plural nouns of various types, and third
person singular forms of verbs).

5. Next there are a number of tests for special orthographic units of vari-
ous sorts – this set of tests has tended to be expanded fairly frequently
as new classes of orthographic unit are recognized by the analysts post-
editing the output text. This step deals with
(a) individual letters, numbers of various types, Roman numerals
(b) words of the form A/B. The two portions are looked up in the lexi-

con, and the common set of tags from the two parts – words A and
B (if any) – are assigned to the word A/B

(c) formulae, recognized by containing a mixture of letters and num-
bers, or containing special characters like +, are assigned a formula

tag (FO in C7).
6. Words containing a hyphen are dealt with at this stage (if the word

has not already been dealt with, by appearing in the lexicon). There
are three main procedures:
(a) since certain words can appear with or without hyphens, and since

extra hyphens can sometimes be inserted because of line-breaks in
the text, the hyphens are first removed and the word looked up
again in the lexicon

(b) a second procedure recognizes certain prefixes which can be added
to a word without changing its grammatical class. Thus a prefix of
this type can be recognized in counter-attack, and the appropriate
tags extracted from the lexicon entry for attack

(c) finally, a hyphenated word A-B is broken into the two parts A and
B, these parts looked up in the lexicon, and an attempt made to
construct tags for A-B from the tags for A and B. Thus past tense of

verb followed by adverb or preposition can result in adjective (as in fed-up).
7. The next step is an attempt to predict the appropriate tags by consider-

ing the ending of the word:
(a) First the word-ending er is treated specially. The ending is stripped

from the word, and the result looked up in the lexicon. Essentially

Using Probabilities—–113

verb tags associated with the stem indicate a common (agentive)
noun for the word (e.g. listener), and adjective tags indicate a com-
parative adjective (e.g. odder)

(b) A list of word-endings with associated tags is then searched for
the word, and the longest match found. As with searches in the
lexicon a filtering process is again used, so that a word with a par-
ticular ending could have distinctive tags if it appears with or with-
out an initial capital. (For example, -man with a word-initial capital
is likely to be a proper noun, but not if the word begins with a
small letter – compare Bowman and bowman)

(c) Finally a trailing s is stripped, and the resulting stem looked up in
the list of word endings.

8. The final step is a default procedure, if all the above tests have failed.
Any orthographic unit reaching this point is allocated the default set
of potential tags – noun, verb, adjective, adverb.

7.5—Using Probabilities

The result of the procedures described in the previous section is that each
word in the text receives one or more part-of-speech tags. The task of the
probabilistic part of  is to choose a single preferred tag in cases
where a word has more than one. In these cases  in fact ranks all
the potential tags, from most likely to least likely, assigning to each a prob-
ability of the tag being the correct one. This probability figure can be used
to estimate the likelihood of the preferred tag being the correct one, and
allows the introduction of portmanteau tags (see Section 9.3).

As mentioned in Section 7.1, the basic mechanism used by  is to
estimate the likelihood of tags over a sequence of words starting with a
word with a single unambiguous tag, continuing over a sequence of one
or more words with more than one potential tag, and finishing again with
a word with a single tag. Since punctuation marks are unambiguously
tagged in the  system, in the worst case the sequence of words
would be a complete sentence, but it is usually shorter. In principle 
then considers each sequence of possible tags for this sequence of words,
estimates the probability of that sequence, and then chooses the sequence
with the highest probability. The probability of a sequence is calculated
from:

■ the conditional probability P(t t–1 t–2 …) of a particular tag t given that
the preceding tags were t–1, t–2, etc., and

■ the conditional probability P(w t) of a particular word w, given that

114—–A Hybrid Grammatical Tagger: 

the associated tag was t.

Consider an example, where words w0 and w4 are unambiguously tagged
t0 and t4 respectively, and the intervening words w1 to w3 have two or more
potential tags each:

w0 w1 w2 w3 w4

t0 t11 t21 t31 t4

t12 t22 t32

t33

Then the probability of the words w0 to w4 being tagged t0, t11, t21, t31, t4 is
the expression

P(w0 t0) ×
P(t11 t0 …) × P(w1 t11) ×
P(t21 t11

…)
× P(w2 t21) ×

P(t31 t21

…)
× P(w3 t31) ×

P(t4 t31 …) × P(w4 t4)

and a similar expression can be calculated for each possible tag sequence.
Establishing the most probable sequence in this way can result in a large
amount of calculation, especially for a long sequence of ambiguous words
each with several alternative tags. However, there is a procedure, called
the Viterbi alignment, which can reduce sharply the amount of effort
required:

1. We can calculate the probability of the most likely (indeed the only)
path from t0 to each of t11 and t12. For example, the probability of the
former is P(w0 t0) x P(t11 t0 …) x P(w1 t11).

2. We can then calculate the probability of the most likely path from t0 to
each of t21 and t22:
(a) consider the path from t0 to t21; it goes through either t11 or t12. The

probability of the path going through t11 is the probability of the
most likely (the only) path from t0 to t11 × P(t21 t11 …) × P(w2 t21)

(b) we can similarly calculate the probability of the path through t12,
and then choose the path to t21 with the highest probability. We
record this highest probability, together with information as to
whether the path went through t11 or t12

(c) we use the same mechanism for choosing the most probable path
to t22.

3. We can then calculate the probability of the most likely path from t0 to
each of t31, t32 and t33. This calculation looks back to the information

Using Probabilities—–115

stored for the possible paths leading up to word w2, but no further.
4. We can continue with this forward calculation, until we reach the end

of the ambiguity. At the end we know the probability of the most likely
route, and which was the best choice of the last ambiguous tag (here t31,
t32 or t33). But the information stored with this tag enables us to find the
best choice of the next to last ambiguous tag (here t21 or t22).

5. We can make a backward pass, extracting the best choice of tag for
each word as we go.

The above Viterbi calculation tells us the most likely tag sequence, and
what its probability is. We may also want the probabilities of the individual
tags. For example, the most likely path in the above example might be t0,
t11, t21, t31, t4 with a probability of 0.4; but there might be two paths
through tag t12 each with a probability of 0.3 (and all other paths have
negligible probability). Then the individual probability for the tags t11 and
t12 is 0.4 and 0.6. We can calculate this by an extension of the above Viter-
bi alignment; on the backward pass we make a similar calculation to that
on the forward pass, and from this we can calculate the individual proba-
bilities (see Jelinek 1976, 1990).

 carries out the above calculations for all sequences of one or
more ambiguously tagged words, and reorders the tags by decreasing indi-
vidual probability, but with the tag on the most likely tag sequence first;
the first tag in the list is ’ preferred tag for this word. It is possible
(as indicated in the example above) for the tag with the highest individual
probability not to be the tag on the most likely sequence, but it is rare.

The probability calculation makes use of information about the likeli-
hood of one tag following another.  is set up to allow the likelihood
figures to make use of only the preceding tag, P(t t–1), or of the two pre-
ceding tags, P(t t–1 t–2). Most of the recent work with  has made
use of only the bigram statistics P(t t–1). As part of the production of the
British National Corpus a two-million word sampler corpus was con-
structed, and this was manually post-edited so that only a very small per-
centage of errors are likely to remain in its tagging. This has been used as
training data, to generate a set of bigram probabilities of one tag follow-
ing another. In fact the sampler corpus is made up of one million words
of written text and one million words of spoken text, so two separate prob-
ability matrices have been generated, one for tagging written material and
one for spoken material.

There is a problem with the calculation of probabilities of tag
sequences. If a certain tag transition has never been seen in the training
data, then any tag sequence containing this transition will have a proba-
bility of zero, and will never be considered. A probabilistic tagger works

116—–A Hybrid Grammatical Tagger: 

on the principle that all tag sequences are possible, but some are more
probable than others. The  system is therefore set up so that any tag
transition which does not occur in the training data is given a very small
probability, so the transition is not treated as completely impossible.

The calculation of the best tag sequence also makes use of the probabili-
ties P(w t), that a particular word is associated with a particular tag.
 in fact stores information about a particular tag being associated
with a particular word P(t w), and uses Bayes’ theorem (see Jelinek 1990)
to calculate P(w t). There are two mechanisms in  for supplying
these probabilities:

1. As with the bigram information, figures for word-tag associations can
be extracted from a corpus of correctly tagged text. Current versions
of  make use of a lexicon induced from the  written and
spoken sampler corpora, and this has word-tag association figures for
all words which appear sufficiently often in the tagged text (see Section
9.2.3).

2. The word-tag association information is likely not to be useful for
words which occur only infrequently. Further, it is difficult to arrive at
suitable frequency figures for words which have been assigned a set of
potential tags as part of some rule-driven procedure, for example for
dealing with hyphenated or capitalized words. For this reason 
has a second mechanism for indicating crude frequency estimates in
cases where good frequencies are not available; in earlier versions of
 all word-tag association information was of this type. If good
frequency information is unavailable, a linguist can indicate in the lexi-
con that for a particular word a particular tag is unlikely (nominally less
than 10 per cent chance, indicated with a ‘@’-character) or very un-
likely (nominally less than 1 per cent chance, indicated with a ‘%’-char-
acter). Similarly some of the rule-driven procedures deliver frequency
estimates of this crude form.

The  probabilities are all obtained by extraction from text corpora
which have been corrected by hand. There is another mechanism by
which probabilities can be estimated. If we start off with a set of tag transi-
tion and word-tag probabilities, and with a corpus of text (without part-of-
speech annotation) it is possible to perform an iterative procedure called
the forward-backward algorithm which adjusts the probabilities a bit
at a time in the light of possible tag sequences estimated to occur in this
training data. Thus an initial set of estimates of probabilities is adjusted in
the light of a quantity of training data of an appropriate type to give a
more accurate set of probabilities which can be used on other texts of the
same type (see Jelinek 1990 and Chapter 10 for more details of this self-

Using Contextual Patterns—–117

organizing methodology).

7.6—Using Contextual Patterns

Early in the development of the  system, two problems were no-
ticed with the mechanism described above:

1. Some text items are traditionally written as two or more separate
orthographic words, but function as a single grammatical unit; ob-
vious examples are multiword prepositions such as according to (see
multi-words, Section 2.2). The  team came to refer to the tags
associated with these multiword units as ditto-tags, since a sequence
of orthographic words would receive the same tag.

2. There were some segmented patterns of words which the probabilistic
mechanisms described above did not handle very well, and which
could be handled by searching for a few simple patterns of words and/
or tags.

It was therefore decided to write a simple pattern matching module, which
would run immediately before the Viterbi alignment procedure. There
would be a small number of patterns (in the first version of , some
150 patterns) each with an associated action – to insert one or more tags
on one or more words matched by the pattern. Although the ditto-tag
problem could have been solved by extending the lexicon to include multi-
word units, it was decided to use the contextual pattern matching module
for this task as well.

The contextual pattern matching mechanism has been extensively de-
veloped in more recent versions of . A pattern to be matched con-
sists of a sequence of two or more elements, to be matched to a sequence
of two or more words in the text. An element to be matched can consist of
any of the following:

■ a word (for example according), a regular expression representing a word
(for example any word ending with -ing), a particular word with initial
capitalization (thus a pattern element Times would not match times), any
word with an initial capital (this is useful for matching the open-ended
portion of certain types of geographical naming expressions, for in-
stance), or any of a list of similar words (this allows multiple patterns to
be encoded more concisely)

■ a part-of-speech tag (for example any word assigned a potential adjec-
tive tag), a regular expression representing a tag (for example any tag
starting with an N, indicating a noun tag of some form), or any of a list
of possible tags

118—–A Hybrid Grammatical Tagger: 

■ an indication that the match must fail – for example, it is possible to
search for a pattern of words or tags not preceded by some part of the
verb to be

■ an indication that a particular pattern element is optional (a common
element useful in correcting verb patterns allows an optional interven-
ing adverb or the word not or n’t)

■ an indication that an optional element can be repeated a number of
times (it is, for example, possible to indicate that up to three words can
occur between the two parts of a pattern).

A rather rebarbative syntax has grown up over the years of  devel-
opment for indicating all the above types of pattern element. More recent
developments, particularly the Template Tagger described in the next
chapter, have cleaned up and extended the syntax to allow more powerful
matches than are currently possible with . An example would be
the possibility of defining a named set of words which could be quoted in
a number of different rules; in  the list of words would have to be
written out in each pattern which required them.

There is a problem in the  contextual pattern matching (which
re-occurs in other pattern matching programs; see Sections 8.3.3 and
9.2.5) to do with dealing with the overlap between patterns, or the decision
of which is the preferred pattern if several match simultaneously (and
given that the application of the actions of one matching pattern might
cause other patterns to cease to match).  has a conceptually simple
mechanism for dealing with multiple matches:

■ the text is scanned from beginning to end, and each pattern is tried at
each word position in the text with all possible structures

■ if there are more than one matching patterns starting at a particular
point, then a score is calculated for each such pattern and the actions
of only the highest scoring pattern are carried out. The score is based
on the type of match (for example, an element matching on a word
scores higher than a match on a tag, and a pattern most of whose
matches are on words scores higher than one most of whose matches
are on tags), and then on length of match (a longer pattern scores
higher than a shorter one). Thus as well as beats as Adjective as (by the first
criterion) and beats as well (by the second criterion)

■ when a pattern is chosen by the above criterion, then all other patterns
commencing at the same point are abandoned. Furthermore, all pat-
terns which begin within the scope of the matching pattern are aban-
doned, and the pattern matching recommences immediately beyond
the matched pattern. Thus it is not possible with this mechanism to
recognize a pattern within the scope of another pattern; for example,

Conclusions—–119

a multiword adverb (recognized with a ditto-tag pattern) within a verbal
pattern requiring an adverb.

To provide more flexibility the pattern matching in the latest versions of
 is divided into a number of passes. There are two passes before the
Viterbi probabilistic disambiguation described in the previous section and
two afterwards. The idea is that most multiword units requiring a ditto-tag
will receive one in the first pass, and then the results of this pass are avail-
able to the second pass. While patterns in the first two passes match any

potential tag, those in the final two passes match only on the tag preferred
by the Viterbi process.

7.7—Conclusions

The result of running  over the text displayed at the end of Section
7.3 is as follows:

**6;0;START NULL

The AT0
naïve AJ0
cat NN1
sat [VVD/91] VVN@/9
on [PRP/90] AVP@/10
the AT0
**18;7;hi NULL
Persian AJ0
</hi> NULL
mat [NN1/99] AJ0@/1 VVB@/0
. .
**8;26;text NULL

The first column represents the words of the text; items commencing **
indicate a reference to a particular position in the supplementary file (here
corresponding to most of the  tags). The second column represents
the part-of-speech tags assigned by , with the preferred tag at the
left. Where there is a choice the numbers indicate the percentage likeli-
hood of the individual tag, and the square brackets indicate the preferred
tag sequence.  tags are given the special part-of-speech mark NULL.
The dashed line indicates the insertion by  of a sentence break. The
actual output from  also includes line reference numbers, tagging
decision codes and other subsidiary information.

Currently,  operates with an accuracy rate of some 96–97 per
cent across the whole range of texts in the . If manual post-editing is

120—–A Hybrid Grammatical Tagger: 

required, an X-Windows-based editor Xanthippe (see Section 13.3.1) pro-
vides a user interface onto the (vertical format) text, allowing a correct tag
to be promoted to the preferred tag position or a new tag inserted from a
panel of options. Other facilities allow the editor with a few key-strokes to
insert or delete sentence breaks, split or join words, or modify the ditto-
tagging.

A final program in the suite reformats the output from , whether
post-edited or not, into normal horizontal running text with the part-
of-speech tags added; for the  the tags are represented as  entities.
At this stage the characters from the supplementary file are inserted into
the output, resulting in a text such as:

<text>
<s>
<w AT0>The<w AJ0>naïve<w NN1>cat<w VVD>sat<w PRP>on
<w AT0>the<hi rend="italic"><w AJ0>Persian</hi><w NN1>mat<c PUN>.
<s>
</text>

In the introduction it was stated that most of the  was tagged with a
C5 tagset of some 61 tags. In fact it was tagged with a slightly larger tagset:
the additions were process tags, making distinctions which were useful
at the disambiguation stage, but not required in the final result – the map-
ping to remove these extra tags is performed at the final post-processing
stage, as is the introduction of portmanteau tags; that is where the
 system is unable reliably to decide between two tags, and conse-
quently both tags are assigned to the word output. This final program
decides whether a portmanteau tag is appropriate based on the individual
word probabilities calculated by the Viterbi processing described in Sec-
tion 7.5; the issue of portmanteau tags is discussed further in Section 9.3.

This chapter has described the general structure of the current version
of the  tagging system (), incorporating both a basic proba-
bilistic Viterbi process and a supplementary rule-based set of components,
capable of assigning part-of-speech marks to general text with an overall
accuracy rate in the region of 96–97 per cent. The next chapter describes
the Template Tagger, a program which extends the pattern matching
techniques of Section 7.6, to insert further grammatical annotation or to
correct annotation (such as part-of-speech information) which has already
been inserted. Chapter 9 describes in more detail how the  program
was adapted for use in tagging the British National Corpus with its wealth
of different text types.

Notes

Notes—–121

1. It should be noted, however, that Voutilainen uses a more complex measure
of tagging success, derived from information retrieval, calculating two
percentage figures known as precision and recall. Recall is the extent to
which all legitimate readings are found in the output of the tagger – allowing,
that is, for ambiguous taggings of one word. Precision is the extent to which
illegitimate readings are discarded from the output (see Voutilainen 1995:
172). Optimally, both measures should be 100 per cent. Voutilainen (1995:
275) records the following impressive result of one experiment: Recall 99.77
per cent; Precision 95.54 per cent.

2. The name  was applied to a modified version of  which in-
volved attempts at verb subcategorization. It never became a fully developed
system.

3. The  corpus was collected and transcribed at Bergen (see Haslerud and
Stenström 1995). Part of it was incorporated into the  as part of the spo-
ken material, but an enhanced version, in a more detailed transcription, is
being grammatically tagged at Lancaster, using .

