
8

How to Generalize
the Task of Annotation

STEVE FLIGELSTONE, MIKE PACEY
and PAUL RAYSON

8.1—Introduction
In the last 20 years, ’s principal technique for automatic grammati-
cal analysis has been a probabilistic one. Training methods for this tech-
nique usually rely upon large bodies of text analysed in advance either
completely by hand or by machine and then corrected by grammarians
(see Garside et al. 1987, Black et al. 1993).

Such probabilistic algorithms have achieved high success rates when
applied to part-of-speech (POS) tagging. However, with a baseline of 96–
97 per cent accuracy, the amount of data needed to train more accurate
models increases exponentially, and it is not clear that training from a
hand-corrected1000–million word corpus woulddecrease errors dramati-
cally. Therefore, as a complement, and occasionally as an alternative, to
probabilistic methods, increasingly employs template analysis
techniques, with programs such as and the rule-based component
of (described in Fligelstone et al. 1996) all using closely related and
essentially similar template-based techniques to reduce errors and/or am-
biguity. Template-based methods are applied more generally, without a
statistical counterpart, in semantic annotation: for example in linking
nouns with textually-related adjectives or verbs (see Wilson 1993, Wilson
and Rayson 1993).

With further projects developing along similar lines, in order to avoid
further duplication of programming effort when implementing template
methods, and to develop a flexible system for developing and evaluating
rule sets, we decided to build a general purpose rule interpreter or Tem-
plate Tagger. It has already been tried out on the problems for which
we have individual tools, but has also found application in new analytical
tasks. In due course, deployment of the tagger in new problem areas will
enable us to see what further features could usefully be incorporated.

In the following sections, we describe the main characteristics of the

Framework for a Template Tagger—–123

Template Tagger, discuss its development to date, and refer to specific
areas of application.

8.2—Framework for a Template Tagger

8.2.1—General aims

Our goal in developing the Template Tagger was to create a general-
purpose program which could be used to apply rules for text annotation
irrespective of the particular analytical task in question, and in a way
which could utilize, and if necessary amend, any existing mark-up in the
text input. The program was required for immediate application to a par-
ticular multi-level analysis project,1 but was designed from the outset with
the intention of using it for other tasks, as described in Sections 8.4.1–3.

This was achieved by making explicit various aspects of the annotation
procedure which are implicit in the task-specific systems referred to above.
To illustrate this point, let us consider a simple rule from the contextual
pattern rule set (see Section 7.5), more commonly known as the
idiomlist:

a DD231, great DD232, many DD233

Without going into too much detail about the underlying system, the
basic purpose of this rule is to tag any instance of a great many as a com-
plex determiner (DD2),2 rather than to allow the system to tag each sepa-
rate word on a word-by-word basis. What is significant for our argument
here is the brevity of the rule, made possible by the fact that the system
operates within a tightly confined framework of possible input and output
tokens, and tagging operations. In this case the system ‘knows’ that a great

and many are parts of the lexical input, and that the DD231, DD232, etc. are
candidate POS tags, i.e. output tokens, which must in this case replace

any earlier list of candidate tags in the event of a match.
Slightly different conventions are used with the system to format

a rule used to identify an active, as opposed to passive, use of a past parti-
ciple:

VH* R* V*N[PERF] {by}3

In this rule, white space, rather than commas, is used as a separator be-
tween input tokens; the output token is indicated by the use of square
brackets; and the effect, or ‘action’ of the rule, is not to add anything to
a list of candidate tags, but to modify the existing VVN POS-tag in such
a way as to mark it as definitely active, rather than ambiguously active-
passive, in other words, to replace one POS tag with another (more

124—–How to Generalize the Task of Annotation

POS: VH* + POS: R* + POS: V*N + WRD: by

↓
Replace
POS: VV0N

Figure 8.1—Explicit representation within a template rule

informative) one. Note also that in this rule the input tokens are a mixture
of wildcarded4 POS tags (VH*, R*, etc.) and lexical items (‘by’), and that in
this rule scheme, the use of curly brackets is used to indicate lemmas.5

Both these systems are able to use very terse rule formats because they
each operate within a confined, albeit different, framework. Although the
default tagging operation in each system is subtly different, it is always the
same, so needn’t be spelled out, and the possible types of input allowed by
each system are so confined (in ’ case only words and POS-tags are
present, and in ’ case, only these plus lemmas), that mere position or
use of brackets can suffice to avoid any ambiguities.

But what if we wish to apply not only POS tags, but also semantic tags,
or an additional level of grammatical tags or dependency tags? And what
if we wish such tags to be available as input against which to match and
fire further rules? And what if we don’t always wish the same action to be
undertaken, but sometimes one action (e.g. ‘add tag to list’) and sometimes
another (e.g. ‘overwrite existing tag with new tag’), or yet another, (e.g.
‘delete this tag’)? And finally, what if we wish to perform all these tasks
with a single system, rather than having to create customized software for
each task?

In this case, we would need to re-think the rule format cited above, in
order to make it quite clear to a generic system

■ which parts of the rule specify input and which output
■ at what level of input/output the particular tokens are significant
■ precisely what action the rule is to perform.

We might represent the rule as in Figure 8.1. Although making such
information explicit leads to less succinct rule formats, it enables us to
design a flexible multi-purpose system required for implementing novel
annotation regimes.

8.2.2—Multiple levels of annotation

In the foregoing section we have referred to distinct levels of annotation
(see Section 1.5), such as ‘the POS tag level’. As a general purpose tagger,

Framework for a Template Tagger—–125

the program should support multiple levels of annotation, but we did not
wish to pre-judge the range of types of annotation which would be present
in the input, or which the tagger would be required to apply. We see the
normal operation of the tagger as accepting text with n levels of annota-
tion and allowing the user to add one or more levels of annotation to this,
building on levels already contained in the input, or simply to alter exist-
ing levels of annotation.

The term ‘level’ is used here to signify a type of information. Just as
there is no pre-defined set of levels, nor is there any implicit structure or
hierarchy of levels. The user is at liberty to use any number of levels, with
any significance appropriate to the task and the rules written for it. It
would be perfectly possible, if rather pointless, using such a system, to tag
all words beginning with ‘a’ as having the value ‘A’ at some arbitrary level
‘first letter’ for which the code FSL has been chosen by the user. The
following single rule would suffice.

Pattern(WRD: a*/A*)—Action(Inserttag(FSL: A))

Assuming that the Template Tagger is able to identify the WRD level in its
input stream, the only special information required by the program to
apply such a rule is a declaration in its configuration file that the levels
WRD and FSL are to be used (see Section 8.2.3).

In its original conception, the Template Tagger allows any number of
levels to be declared and used, and rule sets have been developed which
manipulate annotations at several levels simultaneously, allowing, for ex-
ample, grammatical decisions to be based on semantic features and vice
versa.

The only obligatory analytical level is the word (or punctuation item)
itself (level: WRD). All other levels, and the three-letter codes used to repre-
sent them, are introduced at the user’s discretion.

For the program to know to which level a particular input token be-
longs, one of two approaches may be taken. Either all input must be for-
matted in such a way that each item is explicitly labelled, or the program
must be adapted to ‘understand’ a particular input format. So far, we have
taken the latter approach, since we already have well-established text for-
mats in constant use, but the requirement for a particular input ‘parser’
for any given task is obviously at odds with the goal of a truly generic tool.
However, care has been taken to adopt a modular approach to the pro-
gram construction (see Section 8.3.2), in order to ensure that the heart of
the program is universally applicable, with changes only to the input and
output modules required to handle new input formats and output require-
ments. A default output format in which each token of output is labelled
for level is also available.

126—–How to Generalize the Task of Annotation

8.2.3—User control

We have already seen that the user must declare which analytical levels
are to be handled by the program. Experience has shown that there are
a number of other factors which it is useful to be able to vary with rule-
driven analyses of the kind the Template Tagger would be used to per-
form. These include:

1. whether to split the rules into separate files (either for ease of editing,
modularity, or selective re-application),

2. in what order to apply the various rule tables,
3. whether to stop searching a rule table once a rule has fired successfully

or to continue and apply some heuristic for overlapping items, and
4. how to apply any action specified when a rule fires.

All these choices can be controlled by the user of the system in the
configuration file, with defaults to enable the novice to achieve simple
results without too much knowledge. The configuration file contains two
sections, the first listing the levels relevant to the current task, and the
second outlining the tagging strategy to be employed.

The only purpose served by the first section in its present form is to
provide a check list so that the program may detect when an invalid rule
is encountered, i.e. one which contains a reference to an invalid level. In
due course the error-checking function of this section could be extended
by including names of files containing validation rules for values at the
various levels. This could include tag-lists, for closed label sets such as
POS tags, or more general format rules for more open-ended annotations.
A further type of declaration which belongs in this section concerns the
level-specific formatting for the as yet unimplemented ‘indexing’ function,
referred to in the following section.

The second section tells the program where to find the rules and what
to do with them; specifically, for each rule file named, how many times to
cycle through the rule set before proceeding to the next file, and whether
to search to the end of the file in question in all cases (‘through’ mode), or
whether to quit the rule table as soon as a rule is fired (‘hit’ mode).

8.2.4—A range of tagging operations

The action part of a rule is carried out when a rule fires successfully.
Depending on the application, we might need to replace completely the
contents of one level (e.g. a complete disambiguation of a set of POS tags)
called ‘HardInsert’, or add a tag or marker to a list of existing values
(called ‘Append’). ‘SoftInsert’ adds a tag only if there is currently no value

Creation of the Tool—–127

at the specified level (i.e. it can’t overwrite or append). This is useful
for ensuring that potentially recursive rules fire only once, such as when
identifying the opening of a noun phrase. A function ‘Void’ has the effect
of deleting any existing values at the specified level. We also envisage a
‘Remove’ function which would remove one value from a list on one level
for partial disambiguation purposes, a ‘Promote’ function which would
re-order values stored at a particular level, an ‘Index’ function which
would generate numerical indices for linking items, whether adjacent or
non-adjacent, e.g. for anaphoric links or indexed subject-object linking,
and functions for modifying existing tagging, e.g. by the addition of a
subscript.

One of the most challenging aspects of the development of this software
has been to devise and define the minimum range of operations which will
cater for most if not all of our tagging requirements.

8.3—Creation of the Tool

8.3.1—Development of the Template Tagger to date

Version 1 of the Template Tagger was written in 1994–95 to apply
multiple levels of annotation to text already annotated by and
subsequently by (see Fligelstone 1995). Version 1 represents in
many ways a prototype, with limited efficiency and some functions as yet
unimplemented (see Section 8.2.4), but does adhere to the generic design
principles outlined in the previous section.

Later in 1995, the Template Tagger was selected as the tool with which
to undertake tag correction and enhancement work on the British
National Corpus ().6 Unfortunately, the scale of the tagging task
(some one hundred million words of input, applying several hundred
rules) meant that the slow speed of the prototype, which was itself still
under development, was too restrictive for the task in question.

Version 2 was thus commissioned; a more streamlined, cut-down ver-
sion of the prototype. The main concession to efficiency was the dropping
of unlimited LEVELS and VALUES. In the prototype, any number of these
could be used. In Version 2, levels are hard-coded, and are limited to
those relevant to the project, and for any token, a maximum of six
values may be stored at any given level. Version 2 thus represents a step
forward in efficiency but a step back from the goal of a truly generic tool.
It is to be hoped that a future Version 3 will marry the virtues of both. All
versions have been developed in C on a platform.

In the following sections we discuss in more detail some features of the

128—–How to Generalize the Task of Annotation

Template Tagger’s operations and design, with reference to the issues of
flexibility and efficiency.

8.3.2—Input-output modularity

The Template Tagger was initially required to process a single format of
corpus, the ‘vertical’ format, containing one word or punctuation
item per line of input, along with a POS tag (the tag) and a string
representing the lexical headword or lemma. However, the program was
always intended to have wider applicability, so input and output modular-
ity was implemented from the start.

The basic concept behind the Template Tagger is that any word-unit
in a corpus can be split up into a number of LEVELS corresponding to differ-
ent facets of information about the word (see Section 1.5). Each level may
have one or more values (a familiar example of a multi-value level occurs
in vertical-format text, where each word may have a number of
‘candidate’ POS tags, listed in order of likelihood).

The pattern-matching engine within the Template Tagger operates on
a sentence (or in later versions, ‘unit’) level. The Template Tagger reads
in a sentence,7 converts it into an internal data structure, processes it, and
outputs the results. The internal data structure for a sentence is generic
enough to allow for different formats of corpus. Handling a new corpus
style is thus simply a matter of writing new input and output routines, in
other words, customizing the tool to be able to assign to the appropriate
level each token occurring in the input stream, and formatting the output
according to requirements.

Ideally, we would like to create a system which would allow the user to
‘explain’ to the program how to interpret various input formats, but this
is too ambitious at the present time. For now we have confined ourselves
to the creation of routines selected by command-line options appropriate
to the various formats with which we regularly work. A next step would
be to create an input mode which expects all input to be labelled for level.
The usefulness of this will be proportional to the extent to which there is
agreement and take-up of standard conventions for producing explicitly
labelled annotated text (see also Chapter 16 of this volume).

8.3.3—Rule-matching algorithm

The rule-matching algorithm is the heart of the Template Tagger. As has
been mentioned, rule matching currently works on one sentence at a time
– an attempt is made to match each rule provided by the user at each
position in the current sentence, starting with the first word. If several

Creation of the Tool—–129

rule files are to be used, the sentence is processed in its entirety using
one file before proceeding to the next file and returning to the start of the
sentence. If each rule file contains a different type of rule, this has the
effect that the sentence, and by extension, the text, is subjected to one
form of analysis before being subjected to another.

Each Template Tagger rule is composed of one or more ‘cells’, de-
signed to match one or more adjacent items in the sentence. Multiple cells
in a rule attempt to match adjacent items in the sentence. Each cell com-
prises a ‘pattern’ section and an optional ‘action’ section. The pattern
section details a set of criteria that an input item (i.e. a word or punctua-
tion item plus any associated annotation) must meet for the rule to match.
To increase the power of pattern matching, a variant of -style reg-
ular-expressions may be used, including wild cards to represent multiple
characters and negation (e.g. POS: NOT a noun).

The action section of the cell is optional, and contains a set of one or
more operations to be carried out on the matching word if and only if the
rule as a whole fires (i.e. if every cell in it matches). The most basic, and
to date the most commonly used operation is ‘HardInsert’, which erases
all current values (if any) at the specified level and replaces them with the
value(s) specified in the rule. This operation is useful for adding com-
pletely new information, for enriching existing annotation (e.g. replacing
general tags with more precise ones), and for tag correction. Actions may
be included in any or all of a rule’s cells.

An extension to the rule matching system is the optional cell. An op-
tional cell does not have to be matched in order for the rule as a whole to
fire. The optional cell takes a number argument, which specifies how
many input items it may maximally match. The Template Tagger rule in
Figure 8.2 (overleaf) is basically a rendition of the rule in Figure 8.1,
except that the adverb cell (cell 2) is optional, and may match up to three
consecutive adverbs. It is possible to include an action within an optional
cell, but if the optional cell matches more than one item of input, the same
action will be applied to all of them.

The optional cell device produces the problem of possible multiple
matches for a rule from a single starting point (i.e. the rule may fire by
either matching or omitting to match the optional cell(s)). In such in-
stances, the Template Tagger employs a simple strategy of choosing the
longest match. If there are competing match permutations of equal length
from the same rule (a rare occurrence, in our experience to date), the
Template Tagger will choose the rule-match which matches the cell(s)
closest to the beginning of the rule.

The longest match principle also requires that care be exercised in writ-
ing rules containing optional cells in a medial position. For example a rule

130—–How to Generalize the Task of Annotation

<RULE>
<NAME> Perfect-1
<CELL>

<PATTERN>
<LEVEL> POS
<VALUE> VH*

</PATTERN>
</CELL>
<CELL>

<OPTIONAL> 3
<PATTERN>

<LEVEL> POS
<VALUE> R*

</PATTERN>
</CELL>
<CELL>

<PATTERN>
<LEVEL> POS
<VALUE> V*N

</PATTERN>
<ACTION>

<OPERATION> HardInsert
<LEVEL> POS
<VALUE> VV0N

</ACTION>
</CELL>
<CELL>

<PATTERN>
<LEVEL> WRD
<VALUE> by

</PATTERN>
</CELL>

</RULE>

Figure 8.2—Template Tagger rule with optional cell

intended to capture a noun and the next finite verb, regardless of inter-
vening text, must contain an optional cell to represent that intervening
text not as anything at all, but as anything which isn’t a finite verb. Other-
wise, it is the last finite verb in the sentence which will be matched by the
rule, not the first one following the noun. Injudicious use of optional cells
can cause whole sentences to be ‘swallowed’ by rules in this way.

8.3.4—Invisibility

When processing corpora, certain portions of the corpus may interfere
with easy pattern matching. An example would be in spoken discourse
where certain aspects of speech (coughs, fillers or pauses) have been tran-
scribed, interfering with the flow of the text, and thus pattern-matching.

Areas of Application—–131

POS: J*/VD*/VV*/N*
WRD: NOT(got/able/willing)

+ POS: TO

↓
Insert

LBR: [Ti

Figure 8.3—Rule to mark opening of an infinitive clause

Invisibility allows the user to instruct the Template Tagger to ignore cer-
tain ‘words’ for the purpose of pattern-matching unless a cell’s pattern is
explicitly looking for it.

In Version 1, this took the form of a few hard-coded exceptions in the
pattern-matching algorithm, notably the NULL8 tag and the
double-quotes tag. This element was enhanced in Version 2 to allow the
user to specify a set of invisible words, based upon their POS values. Ulti-
mately, invisible items should be user-definable with reference to any level
or combination of levels.

Future work will focus around improving the -conformant format
output module, and increased user-control in the areas of corpus format
and output options.

8.4—Areas of Application

8.4.1—Partial syntactic parsing

The first task to which the Template Tagger was put was not the one ini-
tially envisaged. Whilst it had been anticipated that the program would
first be used for the purpose described in the next section, just as the pro-
gram was approaching its first trials, Geoffrey and Fanny Leech outlined
a set of rules which would produce, on the basis of POS-tagged input, a
partial scheme of syntactic labels, not necessarily balanced, which they
would then use as input to a further syntactic analysis program designed
to complete the parsing task (cf. Garside and Leech 1985).

These rules lent themselves easily to conversion to the Template Tag-
ger format, and the program was successfully deployed on this task. Two
levels, LBR and RBR were introduced, to handle left (opening) bracketing and
right (closing) bracketing respectively. Figures 8.3 and 8.4 contain exam-
ples of the kind of rules produced.

132—–How to Generalize the Task of Annotation

POS: N + POS: PNQ/DDQ

↓
Insert

LBR: [Fr[N
Insert

RBR: N]

Figure 8.4—Rule to mark opening of a
relative clause

8.4.2—Semantic tagging

The most elaborate use made of the Template Tagger to date has been in
the creation of a multi-level annotated corpus with various kinds of gram-
matical and semantic information added. The progress made did not
amount to a complete semantic analysis, as many more rules would have
been required to make such a claim, but it none the less demonstrated the
value of the program in applying a layer by layer analysis of text, using
rules in later stages of the analysis which depended on information added
at an earlier stage. All these stages could be incorporated into a single
execution of the program so that the input text could be dealt with thor-
oughly, on a sentence-by sentence basis.

Input to the program was an enriched POS-tagged corpus which incor-
porated a column showing the lemma or lexeme (which allowed for more
succinct rule writing than would have been possible had only the word
been available), produced by the program , one of the earlier tem-
plate-based annotation programs which in fact led to the development of
the Template Tagger (see Sections 8.1 and 8.2 and Fligelstone 1995).

Rule files applied by the Template Tagger dealt with analytical issues
such as clause boundary identification, subject identification, main depen-
dencies, phrasal verbs, verb disambiguation, lexical look-up, fixed idioms,
stereotypical sentences, and so on. Occasionally a rule would apply several
levels of tagging at once (stereotypical sentences being a case in point), so
that, for example, semantic information might be applied at a much
earlier stage in the process than would normally be the case.

By combining all the levels of analysis into a single all-embracing tag-
ging process, it was all too easy to commit the error of including a rule
which could never fire because it depended on patterns which could only
be produced by rules occurring later in the run. To overcome the prob-
lem it was found useful to adopt the convention of grouping rule tables
into sets which were labelled A, B, C and so on. This was purely a matter

Areas of Application—–133

Ref. No Pos Word Lemma Clause Dependent Head Function-Semantics

0000182 030 PPMS1 He HE <1> &Nn SBJ-Human-Male
0000182 040 VABD was BE
0000182 050 VV0G wanting WANT <N &Va VRB-Wanting-1
0000182 060 TO to TO +TI
0000182 070 VV0I know KNOW <V &Va VRB-Thinking-Know
0000182 080 CSW whether WHETHER +FN
0000182 090 PPMS1 he HE <2> &Nn SBJ-Human-Male
0000182 100 VM00 could COULD
0000183 010 VV0I expect EXPECT <N &Va VRB-Wanting-5
0000183 020 PPY00 you YOU <V &Nn OBJ-Human
0000183 030 IF for FOR &P ADV-
0000183 040 NN1 lunch LUNCH &Nn Concrete-Food
0000183 041 . . .

Figure 8.5—Sample Template Tagger output

of convention with no programming implications. The first few rule files
consulted were A-files, followed by the B-files, and so on. Although an
A-file rule could be used to apply any level of annotation, the patterns
which its rules sought in the text could only contain the kind of informa-
tion available in the output. A rule which required information
about heads and clause boundaries, largely applied by the A-rules, would
therefore have to be included in a B-file, and rules requiring higher level
input such as semantic tags would be confined to the C-files, and so on.9

Figure 8.5 demonstrates the output format and the levels of information
encoded.

8.4.3—British National Corpus enrichment and
correction

The Template Tagger was used as an important part of the British Na-
tional Corpus Tag Enhancement project () described in more detail
in Chapter 9. The team used Version 2 to apply rules for the assign-
ment of part-of-speech tags that were too complex for the tagging
formalisms. For this task it was necessary to use only the levels WRD, POS

and DEC. DEC is the decision code – a two figure code indicating
which part of the program (lexicon, suffixlist, etc.) had assigned the tag.

It had been found that there were errors in the tagging of the
 that could not be correctly resolved using the resources. The
Template Tagger, however, was powerful enough to encode a large num-
ber of more complex rules. While it was not necessary to use the full range
of functionality of the Template Tagger, at least not in terms of levels, the
 team did have to formulate some very complex rules. A further
new problem was how to apply hundreds of rules to a 100 million word
corpus while ensuring that the sequence of rules was correct to achieve the

134—–How to Generalize the Task of Annotation

desired effect. Careful preparation and testing had to be carried out in
order to appreciate fully how the effects of different rules interacted.

For example, rules were written and applied to disambiguate words
such as before and after, which may be tagged as subordinating conjunctions
or prepositions, depending on their syntactic role in the sentence.
Compare:

We met again after_CJS the ball was over.
We met again after_PRP the ball.

With the Template Tagger it was possible to formulate a rule that looked
to the right to see if there was a finite verb within the clause, and if so,
tagged the word as a subordinating conjunction. If there was no finite
verb before the end of the clause/sentence, then the word was tagged as
a preposition. Other rules also ran in conjunction with this, to correct
special cases which would not be captured by the main rule, such as before

occurring at the beginning of a sentence before a specific date like 1965.
It became apparent that it was preferable to run the rules that disambigu-
ated finite verbs from non-finite verbs and nouns before the rules for before

and after, so that the latter rules could properly identify finite verbs in the
context.

Without a thorough syntactic parse, it was impossible to correct all
errors, but the Template Tagger was crucial in the project (see
Chapter 9) for improving the accuracy rate of the automatic tagging in
areas where the probabilistic formalisms of and the restricted
power of contextual pattern-matching rules had not been able to make an
impression before.

8.5—Conclusion and Further Development

It will be apparent from the foregoing account that we are still some way
from the completion of a truly generic template tagging program, but it
is encouraging that the three types of deployment discussed in the previ-
ous section have all been possible within the framework of the develop-
ment of a single piece of software.

It remains to be seen whether eventually the general-purpose nature of
our tool will be so well developed that it will be possible to bring it to bear
on novel tasks without the need for modification. That may be hoping for
too much, but what is clear is that as the Template Tagger matures it will
become an increasingly useful analytical and experimental tool. There has
already been mention in this chapter of features which are still at the plan-
ning stage or under development. As our experience in using the tool

Notes—–135

grows, so some of those features may be subtly re-defined or supplanted
by more pressing concerns, but the following areas seem likely to receive
attention:

■ Validation procedures—To date error checking is confined to con-
firmation that input and rules are well formed, and that there is no
reference to spurious levels. With other tools it has been customary to
check the content of information levels, e.g. to check for an illegal POS
tag. Therefore some means of specifying legal and illegal content at the
user-defined levels would be appropriate.

■ Conversion tools—As well as coping with corpus encoding formats,
we need to take account of rule file formats that currently exist. For
example, in order to save recoding the thousands of rules in the
 module of we have automated their translation to the
Template Tagger format. This will also aid the acceptance of the Tem-
plate Tagger if it is to replace our current tools.

What this tool exemplifies is an approach based on the idea that useful
labelling of text can be based on the treatment of significant fragments
of text, sequences of items which may be specified in templates, without
respect to the ‘well-formedness’ of the broader context. Such approaches
promote robustness, as they are more tolerant of ‘real language’, though
their analyses may be less ‘neat’ than those achieved by more traditional
‘structural’ parsers. Robust analysers now seem to fall into two distinct
types: the probabilistic tagger, of which remains an example, and
the template based ‘fragment’ analyser, of which the work on Constraint
Grammar (see Karlsson et al. 1995) is perhaps the most thoroughly worked
out instance to date. The Template Tagger is in the same tradition,
though less theoretically oriented, intended for deployment on a range of
tasks to be determined by the user, and ultimately as a tool with which to
develop new analytical methods.

Notes

1. Lancaster Database of Linguistic Corpora (an -funded project at Lancas-
ter University, 1990–95). This project involved the creation of a half-million
word corpus, drawn from the texts contained in the British National Corpus,
annotated to include enriched POS-tagging, grammatical functional labels
(Subject, Object, etc.), lexeme identification, principal dependencies, and
some word-level semantic information (Project No. x205262001).

2. The final two digits in each tag turn the tag DD2 into what are called ‘ditto
tags’: see the discussion of multiwords in Section 2.2 (1).

3. This rule states that given the sequence: any form of have; any adverb; any

136—–How to Generalize the Task of Annotation

past participle; the word by, then the past participle is an active ‘perfect tense’
participle.

4. A wild card (the term is borrowed from the card game Canasta) is a symbol
whose function is to stand for any value from a range of possible values.
Thus, in this case, the asterisk is a wild card symbol which can stand for, or
match, any string of characters (including zero characters or one character)
excluding a space. Wild cards are extremely useful devices for automated text
annotation, in that they allow the use of a partial specification, which can
match on an open-ended set of full specifications.

5. A further distinction which this framework allows is between lemma (or lex-
eme) and spelling. The use of uppercase within curly brackets would allow a
match against any part of a lemma, rather than the exact form cited.

6. This work took place within the British National Corpus Tagging Enhance-
ment project () at Lancaster University, funded by the : see
Chapter 9 of this volume.

7. The sentence or ‘unit’ constraint is currently imposed by the rule-matching
engine. The input routines can actually be set to handle a sliding window of
several sentences using a device known as the ‘wheel’ devised by M. E.
Bryant, formerly of . The ability to apply rule-matching routines across
sentence boundaries would open up the possibility of using the Template
Tagger to experiment with rules for anaphoric linking, for example.

8. The NULL tag is used to tag apparent words (normally preceded and
followed by a space) which are not words in a linguistic sense, such as
tags..

9. See the multiple passes through contextual rules in the tagger, Section
7.5 above.

